Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 50(7): e5601, 2017. graf
Article in English | LILACS | ID: biblio-839320

ABSTRACT

This study aimed to investigate the effects of heme oxygenase-1 recombinant Lactococcus lactis (LL-HO-1) on the intestinal barrier of rats with hemorrhagic shock. One hundred Sprague-Dawley male rats (280–320 g) were randomly divided into healthy control group (N group) and hemorrhagic shock group (H group). Each group was subdivided into HO1t, HO2t, HO3t, PBS and LL groups in which rats were intragastrically injected with LL-HO-1 once, twice and three times, PBS and L. lactis (LL), respectively. The mortality, intestinal myeloperoxidase (MPO) activity, intestinal contents of TNF-α, IL-10 and HO-1, and intestinal Chiu's score were determined. Results showed that in N group, the HO-1 content increased after LL-HO-1 treatment, and significant difference was observed in HO1t group and HO2t group (P<0.05). In H groups, MPO activity and Chiu's score decreased, but IL-10 content increased in LL-HO-1-treated groups when compared with PBS and LL groups (P<0.05). When compared with N group, the MPO activity reduced dramatically in LL-HO-1-treated groups. Thus, in healthy rats (N group), intragastrical LL-HO-1 treatment may increase the intestinal HO-1 expression, but has no influence on the intestinal barrier. In hemorrhagic shock rats, LL-HO-1 may significantly protect the intestinal barrier, and repeating the intragastrical LL-HO-1 treatments twice has the most obvious protection.


Subject(s)
Animals , Male , Rats , Heme Oxygenase-1/therapeutic use , Lactococcus lactis , Shock, Hemorrhagic/prevention & control , Disease Models, Animal , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Random Allocation , Rats, Sprague-Dawley
2.
Journal of Korean Medical Science ; : 814-816, 2016.
Article in English | WPRIM | ID: wpr-11684

ABSTRACT

Fluid resuscitation, hemostasis, and transfusion is essential in care of hemorrhagic shock. Although estimation of the residual blood volume is crucial, the standard measuring methods are impractical or unsafe. Vital signs, central venous or pulmonary artery pressures are inaccurate. We hypothesized that the residual blood volume for acute, non-ongoing hemorrhage was calculable using serial hematocrit measurements and the volume of isotonic solution infused. Blood volume is the sum of volumes of red blood cells and plasma. For acute, non-ongoing hemorrhage, red blood cell volume would not change. A certain portion of the isotonic fluid would increase plasma volume. Mathematically, we suggest that the residual blood volume after acute, non-ongoing hemorrhage might be calculated as 0·25N/[(Hct1/Hct2)-1], where Hct1 and Hct2 are the initial and subsequent hematocrits, respectively, and N is the volume of isotonic solution infused. In vivo validation and modification is needed before clinical application of this model.


Subject(s)
Humans , Blood Volume , Hematocrit , Isotonic Solutions/therapeutic use , Models, Theoretical , Shock, Hemorrhagic/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL